首页研究成果

研究成果

(一)代表性科研成果

软件著作权登记证书:

热带区域公里级海气耦合数值预报系统耦合通用陆面模式子系统,登记号:2025SR103792

一种适用于华南复杂地形的风暴潮预报系统执行程序V1.0  ,登记号:  2022SR1185360

有限区域对象化雨区极值分析软件V1.0,登记号:2023SR1481333

大气成分和气象要素垂直探测及廓线数据分析系统V1.0  ,登记号:  2023SR0665286

面向气象要素垂直探测的无人机控制系统V1.0  ,登记号:  2023SR0665087

南海/广东台风大风数值预报系统V1.0  ,登记号:  2022SR1625187

南海台风大风监测系统 V1.0  ,登记号:  2022SR1625188

双线偏振天气雷达正演模拟器软件V1.0  ,登记号:  2022SR0994901

一个自动获取并整理气象观测数据的软件V1  ,登记号:  2022SR1520282

诊断程序开发软件v1.0,登记号:  2022SR0367495

海表温度参数化方案软件V1.0,登记号:2022SR0367493

三维边界层参数化方案开发软件V1.0,登记号:2022SR0367494

Arakawa-C网格的GRAPES模式四阶精度水平差分软件V1.0,登记号:2022SR0367497

南海台风初始化系统V1.0,登记号:2020SR1773602

基于分析增量更新初始化技术的台风初始化方案软件V1.0,登记号:2020SR1692138

非均匀分层下的GRAPES模式二阶精度垂直差分软件V1.0,登记号:2020SR1692139

气象卫星产品质量检验系统V1.0,登记号:2020SR1600089

大气数值模式地形降水预报系统V1.0,登记号:2020SR070572

大气边界层次网格地形拖曳参数化系统V1.0,登记号:2020SR070571

华南暖区旋转风和辐散风动能收支算法系统V1.0,登记号:2020SR070675

S波段双偏振天气雷达质量控制系统2020SR0703445,登记号:2020SR0703445

数值模式中次网格地形重力波拖曳参数化系统V1.0,登记号:2020SR0417346

基于自动站观测地面温度和位温(nudging)系统V1.0,登记号:2020SR0417341

华南对流尺度集合预报系统V1.0,登记号:2019SR1450341

华南区域模式客观检验系统V1.0,登记号:2019SR1451800

1km分辨率分钟级更新区域数值预报系统(简称:GTRAMS_1KM_RUC),登记号:2018SR360374

中国南海台风大气海洋预报模式系统V2.0,登记号:2017SR470832

广东省风廓线雷达资料面向同化质量控制系统【简称EOF-QC】V1.0,登记号:2017SR470834

中国南海台风模式预报系统1.0,登记号:2014SR030695

华南中尺度模式预报系统V1.0,登记号:2014SR142365

基于雷达反射率的水汽一维加三维变分同化系统V1.0,登记号:2015SR035517

华南区域精细数值天气预报模式系统(简称:华南精细预报模式)V1.0,登记号:2015SR030149

华南沿海风电场精细风场数值预报系统V1.0,登记号:2013SR038246

强冰雹雷达自动识别软件V1.0,登记号:2013SR091530

专利:

基于受体模型的一次人为排放VOCs的来源分析方法及系统  ,专利号:  ZL 2025 1 0162561.X

一种太阳辐射稳定度评估方法、装置设备及介质,专利号:ZL202410541688.8

一种探测低空大气要素廓线装置  ,专利号:  ZL202420080384.1

一种相控阵雷达资料同化方法、装置及设备,专利号:ZL 2023 1 1293724.5

风速预报订正方法及装置,专利号:ZL 202310088210.X

基于机器学习实现大气成分的变化规律分析方法及系统  ,专利号:  ZL 2023 1 1052002.0

基于无人机的大气黑碳垂直廓线监测装置  ,专利号:  ZL202310238662.1

阵风预报输出方法、装置、计算机设备和存储介质  ,专利号:  ZL202211347179.9

模拟亮温偏差的估算方法、装置、电子设备及存储介质  ,专利号:  ZL 2022 1 1428840.9

数值天气预报数据获取方法、装置和计算机设备,专利号:ZL202110260724.X

一种针对南海台风分尺度混合的涡旋初始场构造方法,专利号:ZL202110137795.0

基于多源多类型扰动组合的对流尺度集合预报方法及系统,专利号:ZL 2022 1 0716189.9

一种应用于四维变分同化系统的扰动模式构建方法,专利号:ZL 201910795969.5

一种短时临近数值天气预报系统及方法,专利号:ZL201811168925.1

一种搭载于无人机的大气污染物垂直监测平台  ,专利号:  ZL202021841855.4

一种无人机观测气溶胶垂直廓线的空中干燥系统  ,专利号:  ZL 202122365433.5

一种多功能生态环境无人机观测系统  ,专利号:  ZL20211152698.9

后向水汽追踪结果目区域信息自动提取程序的方法  ,专利号:  ZL 2020 10313756.7

一种基于动力松弛逼近的闪电定位资料同化方法  ,专利号:  ZL 2019 1 0983053.2

成果登记:

华南中尺度模式(CMA-GD)关键技术开发与应用,登记号:中气科成登[2025]0052

南海台风近海快速增强可预报性研究,登记号:粤科成登(1)字[2025]A0273号

南海夏季风及区域气候次季节-季节预测技术开发,登记号:中气科成登[2025]0540

南海夏季风变化特征及其对华南降水的影响研究,登记号:中气科成登[2025]0182

台风大风灾害风险综合监测预警关键技术研发与示范,登记号:粤科成登(2)字[2024]A0093号

华南持续性强降水的局地外强迫过程研究,登记号:粤科成登(2)字[2024]A0057号

珠三角城市群-—海岸带致灾雷电动力与物理化学特征及预警技术研究,登记号:中气科成登[2024]0647

不同扰动方法对华南前汛期对流可分辨集合预报多源扰动多尺度特征及其相互作用的影响研究,登记号:粤科成登(1)字[2023]A0360号

南海台风数值预报模式关键技术研发及应用,登记号:中气科成登[2022]0241

华南前汛期强降水集合预报扰动方法研究,登记号:粤科成登(1)字[2022]A0529号

珠三角PM2.5与O3物理化学特性研究与模式关键技术研发及应用,登记号:中气科成登[202210269]

对流尺度集合预报技术与业务应用,登记号:粤科成登(1)字[2020]0273号

南海弱台风结构特征与初值方案研究,登记号:粤科成登(1)字[2021]0868号

广州强降水机理及超高分辨率预报预警技术研究,登记号:GK20210161

广州市精细数值天气预报模式技术研究,登记号:GK20200121

华南雷暴大风线状对流系统的数值天气预报关键技术研究,登记号:中气科成登[2019]0428

GRAPES多网格同化系统中非常规风观测的应用技术研究,登记号:中气科成登[2017]0486

中国南海台风模式升级与业务应用,登记号:中气科成登[2017]0482

热带环流系统的数值天气预报关键技术研究,登记号:中气科成登[2015]0527

华南区域精细数值天气预报模式技术开发,登记号:粤科成登(1)字,[2015]0184号

华南区域高分辨率0-12小时数值模式预报技术研究与系统集成,登记号:粤科成登(1)字,[2014]0149号

 奖:

华南中尺度模式(CMA-GD)关键技术开发与应用,中国气象局2025年度气象科技成果评价,优秀等级

华南沿海海洋灾害性天气大气边界层观测研究,中国气象局2024年度气象科技成果评价,良好等级

雷达反射率同化方案及其在短临数值业务预报的应用,广东省气象科技进步奖一等奖(2024)

华南海洋气象数值模式关键技术研发及应用,广东省气象学会广东省气象技术进步奖一等奖(2024)

南海夏季风及区域气候次季节-季节预测技术开发,广东省气象局2024年度科技成果评价,优秀等级

南海夏季风变化特征及其对华南降水的影响研究,广东省气象局2024年度科技成果评价,优秀等级

南海季风区夏季对流北传的触发机理研究,广东省气象学会广东省气象科学创新奖一等奖(2023)

FY4B AGRI晴空辐射产品及GIIRS 部分有云视场在华南强降水天气下的同化研究,中国气象局预报与网络司2023年度数值预报国省统筹研发优秀报告

集合预报控制预报偏差订正与分辨率影响研究,中国气象局预报与网络司2022年度数值预报国省统筹研发优秀报告

模式关键物理过程对华南暖区暴雨预报的适用性评估与改进,中国气象局预报与网络司2022年度数值预报国省统筹研发优秀报告

基于CMA-MESO的1公里模式系统开发及模式技术改进研究,中国气象局预报与网络司2022年度数值预报国省统筹研发优秀报告

广东省科技合作奖(张邦林,2023)

高质量党建引领高水平科技自立自强,加速构建“百米级”模式先行示范,2022年全省气象部门创新工作奖

适用于华南区域模式“9-3-1”模式系统的对流参数化方案,广东省气象科技进步奖一等奖(2022)

2022.6.17-6.22龙舟水暴雨,“气象部门预报员联盟2021-2022年度优秀预报案例”优秀案例二等奖,徐道生(一般贡献人)

2022.7.1-7.7台风“暹芭”及暴雨,“气象部门预报员联盟2021-2022年度优秀预报案例”表扬案例,吴凯昕(主要贡献人)

南海台风数值预报模式关键技术研发及应用,“十三五”以来气象科技成果评价,“优秀”等级(2022)

珠三角PM2.5与O3物理化学特性研究与模式关键技术研发及应用,“十三五”以来气象科技成果评价,“良好”等级(2022)

GRAPES多网格同化系统中非常规风观测资料的应用技术研究,广东省气象科学创新奖二等奖(2020)

热带区域高分辨率数值天气预报模式,广东省气象科技成果奖特等奖(2019)

区域大气CO2和O3的观测、反演及作用机制,广东省气象科学创新奖一等奖(2019)

台风监测预报系统关键技术,国家科学技术进步奖二等奖(2018)

广东省新一代天气雷达组网关键技术创新及应用,获广东省科学技术奖一等奖(2016)

华南区域精细数值天气预报模式技术开发,获广东省科学技术奖二等奖(2016)

中国南海台风模式预报系统(TRAMS)的研发与应用,气象科学技术进步成果奖二等奖(2016)

超大城市群复杂下垫面边界层过程及精细气象预报关键技术研究,气象科学技术进步成果奖(2016)

(二)科研成果业务转化

 

技术成果名称

实施地点

时间

实施效果

CMA-GD V3.5 广东 2025 2025年9月8日,通过广东省气象局业务升级准入评审。
南海台风模式业务升级(CMA-TRAMS V3.5) 广东 2025 2025年9月8日,通过广东省气象局业务升级准入评审。

500米短临模式

广东 2024-2025年

2024年7月1日开始,在广东省气象局业务网实时展示产品;2025年9月8日通过广东省气象局业务准入评审。

CMA-GD_Solomon 模式预报产品(V1.0)

广东 2024年

2024年11月5日,通过国家气象中心世界气象中心(北京)运行办公室组织的气象国际服务数据产品业务准入。

华南短临模式(1km)

广东

2020年

2020年11月25日,华南短临模式(1km)顺利通过广东省气象局组织召开的业务准入评审。

南海台风模式业务升级(TRAMS V3.0)

广东

2019年

2019年7月26日,广东省气象局在广州组织召开了南海台风模式(TRAMS V3.0)业务升级评审会,顺利通过评审。

华南区域中尺度模式(GRAPES_GZ 3km)

广东

2018年

2018年11月10日,中国气象局预报与网络司在广州组织召开了“华南区域中尺度模式GRAPES_GZ 3km”业务准入评审,顺利通过。

华南区域中尺度模式预报系统V2.0

广东

2017年

2017年8月17日,广东省气象局组织召开了华南区域中尺度模式预报系统业务升级准入评审会。 评审专家组一致认为华南区域中尺度模式预报系统V2.0达到业务升级准入的要求,同意尽快投入业务运行。

中国南海台风模式V2.0

广东

2016年

2016年6月2日,中国气象局在北京组织召开业务升级评审会。评审专家组一致同意“中国南海台风模式V2.0”业务升级。

华南精细数值预报模式

广东

2013年

通过中国气象局业务准入。在日常预报工作与重大灾害性天气过程 中,发挥重要的预报参考作用。

 

(三) 科技论文

 

  1.         2025

[1]Wen Q ,Zhang X ,Hu S , et al. Collaborative assimilation experiment of Beidou radiosonde and drone-dropped radiosonde based on CMA-TRAMS [J]. Atmospheric and Oceanic Science Letters, 2025, 18 (2): 100555-100555.

[2]XUBIN ZHANG,JINGSHAN LI AND, GUANSHUN ZHANG.Multiscale Interactions of Initial Condition Perturbations for Convection-Permitting Ensemble Forecasting over South China during the Rainy Season,MONTHLY WEATHER REVIEW,2025,153:543-563.

[3]Wang, L. et al, 2025: Impact of a New Three-Dimensional Cloud Detection Method of FY-4A GIIRS in the CMA-GFS. Weather and Forecasting,  40, 1227–1239, https://doi.org/10.1175/WAF-D-24-0087.1

[4]Lin, X., Jian, Y., Xu, D. et al. The source of low-level wind forecast error and its influence on simulating the Guangzhou extreme rainfall on 7 May, 2017 using high-resolution TRAMS model. Meteorol Atmos Phys 137, 10 (2025). https://doi.org/10.1007/s00703-024-01055-7

[5]Wang, L., Liu, Y., Wang,J., Wang, R., Lu, H., Wang, R. et al. (2025) Development and impact of weak-constraint 4DVar with model bias consideration in the CMA-GFS.Quarterly Journal of the Royal Meteorological Society, e70059. Available from: https://doi.org/10.1002/qj.70059

[6]Lin, X., Feng, Y., Jian, Y., Xu, D., Huang, J., Chen, H., & Zhang, B. (2025). Nowcasting of a warm‐sector rainfall event in southern China with the TRAMS model: Sensitivity to different radar reflectivity retrieval methods and incremental updating strategies. Earth and Space Science, 12, e2024EA003724. https://doi.org/10.1029/2024EA003724

[7]Huang, L. N., Z. T. Chen, Y. X. Zhang, G. S. Zhang, S. S. Li, W. Y. Li, Y. Q. Long, and R. Q. Zhang, 2025:Impact of Soil Thermal Process on Short-Range High-Temperature Weather Forecasts by CMA-TRAMS. J. Trop. Meteor.,31, 197–211, https://doi.org/10.3724/j.1006-8775.2025.009."

[8]Tian, Q., Li, J., Xie, Z.*, Li, P., Wang, Y., Chen, D., & Zheng, Y. (2025). A novel metric for quantifying solar irradiance stability: Mapping solar irradiance variability to photovoltaic power generation. Renewable Energy, 122035.

[9]Chengzhong Zhang, Pak-wai Chan, Sheng Hu, Yerong Feng, Shuixin Zhong, Yanyan Huang,Aircraft observations of tropical cyclones core structure over the South China Sea and their impacts on track and intensity forecasts,Dynamics of Atmospheres and Oceans,2025,111,101580.

[10]Wang H ,Xue M ,Wu N , et al. Microphysical Characteristics of Frontal and Warm Sector Heavy Rainfall Over South China During the Pre‐Summer Rainy Season [J]. Journal of Geophysical Research: Atmospheres, 2025, 130 (10): e2024JD043209-e2024JD043209.

[11]Peng D ,Zhou T ,Hu S , et al. Temperature and Precipitation Change over South China in CMIP5 and CMIP6 Models: Historical Simulation and Future Projection [J]. Advances in Atmospheric Sciences, 2025, 42 (7): 1-19.

[12]Deng T ,Ouyang S ,Chen X , et al. Impact of the actinic radiative effect of scattering aerosols on ozone vertical distribution in the Pearl River Delta, China [J]. Atmospheric Environment, 2025, 352 121207-121207"

[13]Zheng B ,Qu J ,Huang Y , et al.The Relative Role of Different Mechanisms of Northward‐Propagating Intraseasonal Oscillation Over the Indian Ocean, the South China Sea, and the Western North Pacific.International Journal of Climatology, 2025, 45(10) :e8896-e8896.

[14]Chen Y ,Wang L*,Xu D , et al. Impact of the Sequential Bias Correction Scheme on the CMA-MESO Numerical Weather Prediction Model [J]. Advances in Atmospheric Sciences, 2025, 42 (8): 1-17. "

[15]Zhou L., Lin, X*., Gao C., et al., 2025: Increased Vertical Resolution of Initial Field in TRAMS Model Leads to Spurious Convection Over Sea Surface in Simulating a Typical Warm Sector Rainfall Event in the Southern China. Meteorology Applications.32:e70098.

[16]Jian, Y., Lin, X*., Zhou, W., Jian, M., Zhang, Y., Zhang, R., ... & Yang, S. (2025). Asymmetric Connection of ENSO to Asian–Pacific–American Synoptic Temperature Variability in Boreal Winter. Journal of Climate, 38(21), 6081-6096.

[17]Kong, H.; Wu, K.; Chan,P.W.; Liu, J.; Zhang, B.; Leung, J.C.-H.Climatology, Diversity, and Variability of Quasi-Biweekly to Intraseasonal Extreme Temperature Events in Hong Kong from 1885 to 2022. Appl. Sci. 2025, 15, 1764. https://doi.org/10.3390/app15041764

[18]Chen, W. Y., G. F. Dai, Y. Q. Wang, and G. Q. Xu, 2025: Impact of Improving Radar Reflectivity Assimilation Schemes in High-Resolution Models and Their Combined Application with Convective Environment Parameters on Severe Convective Weather Forecast. J. Trop. Meteor., 31, 212–222, https://doi.org/10.3724/j.1006-8775.2025.011.

[19]Daosheng Xu, Zebin Lu, Jeremy Cheuk-Hin Leung, Dingchi Zhao, Yi Li, Yang Shi, Bin Chen, Gaozhen Nie, Naigeng Wu, Xiangjun Tian, Yi Yang, Shaoqing Zhang, Banglin Zhang,AI models still lag behind traditional numerical models in predicting sudden-turning typhoons,Science Bulletin,2025,70(17),Pages 2705-2708,https://doi.org/10.1016/j.scib.2025.06.010.

[20]Mai J ,Yu L ,Deng T* , et al. Impact of sea-land breezes on a severe ozone pollution episode over the western Pearl River Estuary [J]. Atmospheric Pollution Research, 2025, 16 (10): 102611-102611.

[21]Zhang Z ,Deng T* ,Zhang X , et al. The influence of aerosols on lightning activity in the Pearl River Delta of China [J]. Atmospheric Research, 2025, 321 108066-108066.

[22]Liu S ,Leung H C J ,Xu J , et al. A general framework quantifying variability in spatial inhomogeneity of global precipitation and its contribution [J]. Climate Dynamics, 2025, 63 (2): 129-129.

[23]Peng, D., Zhou, T., Hu, S. et al. Ocean-driven shifts in circulation regime frequency modulate South China rainfall. npj Clim Atmos Sci 8, 379 (2025). https://doi.org/10.1038/s41612-025-01244-0.

[24]Zheng, B. , Jingxuan, Q. U. , Huang, Y. , Peng, D. , Dejun, G. U. , & Chunhui, L. I. , et al. (2025). Evaluating the seasonal cycle of the south china sea monsoon in cmip6 models. Journal of Meteorological Research, 39(2), 322.

[25]M LI(2*).Numerical Forecast Verification and Wind Power Prediction of Typhoon 2314 “Koinu”.Lecture Notes in Electrical Engineering,2025,1395:452-466.

[26]R Wei、Q Wen*、B Zhao、H Deng.Correction and Application of Typhoon Maximum Wind Speed-Power Regression Based on the Light-GBM Frameworks. Lecture Notes in Electrical Engineering,2025,1395:442-451.

[27]张诚忠黄燕燕梁家豪,等. 北斗导航探空上升-下降段探空资料在华南区域数值模式同化应用试验[J]. 热带气象学报,2025,41(1):16-25.

[28]高翠翠,陈浩伟,徐道生,等. 基于MODE方法的2022年极端“龙舟水”模式降水预报偏差特征 [J]. 气象, 2025, 51 (05): 566-580.

[29]符睿,张诚忠,陈新梅,等. 雷达反射率因子同化对云南一次降水过程模拟的影响 [J]. 高原山地气象研究, 2025, 45 (01): 68-76.

[30]伍红雨,吴遥. 华南“龙舟水”强度异常与大气环流和海温异常的关系分析 [J]. 气象学报, 2025, 83 (02): 226-239.

[31]聂绩,林中曦,李普曦,丁天. 中尺度对流系统:从年际年代际变率到气候响应 [J]. 气象学报, 2025, 83 (03): 770-785.

 

2024

[1]Zhang, G., X. Zhang*, Z. Yang, 2024: Effect of horizontal resolution on a meso-β-scale vortex simulation in an extreme rainstorm on 22 May 2020 over South China: A contrastive study based on different-resolution ensembles. Earth and Space Science, 11, e2023EA002921.

[2]Zhang, X., and J. Li, 2024: Different Initial Condition Perturbation Methods for Convection-Permitting Ensemble Forecasting over South China during the Rainy Season. Mon. Wea. Rev., 152, 387–412.

[3]Huang Y Y, Zhang Y X, Zhang C Z, et al, 2024. An assessment of model capability on rapid intensification prediction of tropical cyclones in the South China Sea, Dynamics of Atmospheres and Oceans,106(2024),101431, https://doi.org/10.1016/j.dynatmoce.2023.101431

[4]LI Meng-jie, CHEN Zi-tong, DAI Guang-feng, et al. An Evaluation of Tropical Cyclone Genesis Forecast over the Western North Pacific and the South China Sea from the CMA-TRAMS [J]. Journal of Tropical Meteorology, 2024, 30(1): 20-28.

[5]Wang, L., Liu, Y., Xu, D.,Zhang, L., Leung, J.C.-H., Li, H. et al. (2024) An incremental analysis update in the framework of the four-dimensional variational data assimilation: Description and preliminary tests in the operational China Meteorological Administration Global Forecast System. Quarterly Journal of the Royal Meteorological Society, 150(761), 2104–2122.

[6]Yuxiao Chen, Liwen Wang*, Daosheng Xu, Jeremy Cheuk-Hin Leung, Yanan Ma, Shaojing Zhang, Jing Chen, Yi Yang, Wenshou Tian, Banglin Zhang*. A Sequential Bias Correction Scheme for the Systematic Bias in the CMA-MESO Numerical Weather Prediction Model. Advances in Atmospheric Sciences. doi: 10.1007/s00376-024-4281-9.

[7]Qiushi Wen, Xuefen Zhang, Sheng Hu,et al. Collaborative assimilation experiment of Beidou radiosonde and drone-dropped radiosonde based on CMA-TRAMS,Atmospheric and Oceanic Science Letters,2024,100555.(In press)

[8]Yanxia Zhang, Weiguang Meng, Yanyan Huang.Influence of cloud microphysical schemes on CMA-GD model prediction of a warm-sector heavy rainfall in South China.106(2024)101463, https://doi.org/10.1016/j.dynatmoce.2024.101463.

[9]Deng T , Ouyang S , He G ,et al.Impact of aerosol actinic radiative effect on ozone during haze pollution in the Pearl River Delta region[J].Atmospheric Environment, 2024, 332.DOI:10.1016/j.atmosenv.2024.120610.

[10]Niu, Z., Tang, F. & Wang,L. (2024) All-sky assimilation of FY-4A AGRI water vapor channels: An observing system experiment study for south Asian monsoon prediction.Quarterly Journal of the Royal Meteorological Society, 150(761), 2458–2471.

[11]Li, J., Tian, Q., Shen, Z., Xu, Y., Yan, Z., Li, M., Zhu, C., Xue, J., Lin, Z., Yang, Y., & Zeng, L. (2024). Fidelity of global tropical cyclone activity in a new reanalysis dataset (CRA40). Meteorological Applications, 31(5), e70009.

[12]Chen, Y., Wang, Y., Huang, G., & Tian, Q. (2024). Coupling physical factors for precipitation forecast in China with graph neural network. Geophysical Research Letters, 51, e2023GL106676. https://doi.org/10.1029/2023GL106676.

[13]Luo, Y., Wang, H., Cao, J. et al. Evaluation of machine learning-dynamical hybrid method incorporating remote sensing data for in-season maize yield prediction under drought. Precision Agric 25, 1982–2006 (2024). https://doi.org/10.1007/s11119-024-10149-6

[14]Yu D, Kong H, Leung JC-H, Chan PW, Fong C, Wang Y, Zhang B. A 1D Convolutional Neural Network (1D-CNN) Temporal Filter for Atmospheric Variability: Reducing the Sensitivity of Filtering Accuracy to Missing Data Points. Applied Sciences. 2024; 14(14):6289.

[15]Liu, J., Leung, J. C. H., Huang, H., Xu, D., Li, W., Qian, W., & Zhang, B. (2024). Observed northward shift of large hailstorms in the eastern United States since 2000. Environmental Research Letters, 19(2), 024010.

[16]Zheng, J. Q., Q. Ling, J. Li, and Y. R. Feng, 2024: Improving the short-range precipitation forecast of numerical weather prediction through a deep learning-based mask approach. Adv. Atmos. Sci., 41(8), 1601−1613.

[17]Zheng, Bin, Huang, Yanyan, Li, Lijuan, Wang, He. Heat waves related to Quasi-Biweekly variability over Southern China in the FGOALS-g3 model. DYNAMICS OF ATMOSPHERES AND OCEANS[J]. 2024, 106: http://dx.doi.org/10.1016/j.dynatmoce.2024.101443.

[18]Fei Liu, Jiahui Zhou, Bin Wang, Jeremy Cheuk-Hin Leung, et al. 2024: Opportunities and barriers for skillful sub-seasonal prediction of East Asian summer precipitation. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-24-0055.1( in press).

[19]黄燕燕,陈子通,冯业荣等,2024.南海台风模式对台风利奇马快速增强预报能力研究.气象,50(5):532-546.

[20]文秋实梁卓轩,魏丹淇,等. 基于广东数值天气预报模式产品的扰动天气图系统[J]. 热带气象学报,2024,40(4):633-649.

[21]朱育雷,杨静,钟水新,等. 基于多神经网络的动态权重集成温度预报订正研究 [J]. 热带气象学报, 2024, 40 (01): 156-168.

[22]陈锦鹏,冯业荣,黄奕丹,蔡乐天,洪晓湘,文秋实. 2024. 利用机器学习模拟湿物理参数化方案. 气象学报,82(1):113-126

[23]伍红雨,吴遥,张柳红. 7—9月登陆华南热带气旋频数异常与大气环流和海温的关系. 热带气象学报, 2024, 40 (02): 169-177. DOI:10.16032/j.issn.1004-4965.2024.016.

[24]伍红雨,吴遥,郑璟. 2022年华南极端“龙舟水”与大气环流及海温异常的关系. 大气科学学报, 2024, 47 (03): 450-459. DOI:10.13878/j.cnki.dqkxxb.20221212001.

[25]伍红雨,郭尧,吴遥. 近62 a华南“龙舟水”气候特征及变化. 暴雨灾害, 2024, 43 (01): 84-92.

[26]倪悦,冯业荣,黄燕燕,等. 基于CMA-TRAMS模式地形高度偏差的地面气温误差订正方法研究. 热带气象学报, 2024, 40 (01): 1-10. DOI:10.16032/j.issn.1004-4965.2024.001.

[27]李博,李帅康,陈超,等. 利用DQCT实现2018年8月超历史极值暴雨的高质量模拟 [J]. 兰州大学学报(自然科学版), 2024, 60 (01): 31-39.

[28]金趁意,张冠舜*,龙雨青. 2020年夏季一次暴雨事件伴随干侵入的位涡及垂直运动诊断分析. 热带气象学报,2024,40(3): 411-424.

 

2023

[1]Xu, D. S., Chen, H. W., Leung, J. C.,Huang, H., & Zhang, B. L. (2023). Sensitivity of nocturnal warm sector rainfall simulation to the configuration of initial and lateral boundary conditions:A case study in Southern China based on the operational TRAMS model. Journal of Geophysical Research: Atmospheres,128, e2022JD038452. https://doi.org/10.1029/2022JD038452"

[2]Xu, D. S., J. C.-H. Leung, and B. L. Zhang 2023: A Time Neighborhood Method for the Verification of Landfalling Typhoon Track Forecast, Adv. Atmos. Sci., 40, 273-284. doi: 10.1007/s00376-022-1398-6.

[3]Zhang, C., PakWai, Chan et al. Impact of dropsonde data on two tropical cyclone forecasts in the South China Sea. Meteorol Atmos Phys 135, 23 (2023). https://doi.org/10.1007/s00703-023-00963-4

[4]Zhang G , Mao J , Hua W ,et al.Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou[J].Advances in Atmospheric Sciences, 2023, 40(3):428-446.DOI:10.1007/s00376-022-2189-9.

[5]Jian, Y., M. Y. T. Leung, R. Zhang, W. Zhou, M. Jian, S. Yang, Y. Feng, and B. Zhang, 2023: Bias and Uncertainty of the Relationship between AO and Winter Synoptic Temperature Variability over the Northern Hemisphere under Present and Future Climate. J. Climate, 36, 3245–3259, https://doi.org/10.1175/JCLI-D-22-0230.1.

[6]Gan Q, Leung JCH*, Wang L*, Zhang B. The weakening seasonality of Indo-Pacific Warm Pool size in a warming world since 1950. Environmental Research Letters,2023,18,014024.

[7]Gao, Z., Hu, ZZ., Zheng, F. et al. Single-year and double-year El Niños. Clim Dyn 60, 2235–2243 (2023). https://doi.org/10.1007/s00382-022-06425-8

[8]Huang, H., Leung, J.CH., Chan, J.C.L. et al. Recent Unusual Consecutive Spring Tropical Cyclones in North Atlantic and Winter Oceanic Precursor Signals. J Meteorol Res 37, 208–217 (2023). https://doi.org/10.1007/s13351-023-2111-0

[9]Jiang, N., M. Yu, B. Lu, J. C. Leung, and C. Zhu, 2023: The Late 1970s Shift in ENSO Persistence Barrier Modulated by the Seasonal Amplitude of ENSO Growth Rate. J. Climate, 36, 1387–1397, https://doi.org/10.1175/JCLI-D-22-0507.1.

[10]Jin, J., Dong, X., He, J., Gao, X., Zhang, B., & Zeng, Q. (2023). A regional air-sea coupled model developed for the East Asia and western North Pacific monsoon region. Journal of Geophysical Research: Atmospheres, 128, 2022JD037957. https://doi.org/10.1029/2022JD037957

[11]Niu, Z.; Wang, L.; Kumar, P.Scale Analysis of Typhoon In-Fa (2021) Based on FY-4A Geostationary Interferometric Infrared Sounder (GIIRS) Observed and All-SkySimulated Brightness Temperature.Remote Sens. 2023, 15, 4035. https://doi.org/10.3390/rs15164035

[12]Zeyi Niu, Prashant Kumar & Liwen Wang (2023) Impacts of Assimilating FY-4A AGRI Clear-Sky Water Vapor Aadiance on Short-Range Weather Prediction during Indian Summer Monsoon, International Journal of Remote Sensing, 44:12, 3679-3699, DOI: 10.1080/01431161.2023.2225709

[13]Xiao, H., J. Li, G. Liu, L. Wang, and Y. Bai, 2023: Assimilation of AMSU-A Surface-Sensitive Channels in CMA_GFS 4D-Var System over Land. Wea. Forecasting, 38, 1777–1790, https://doi.org/10.1175/WAF-D-23-0032.1.

[14]Liu, J. Q., X. B. Zhang, Z. J. Dai, et al., 2023: A recombination clustering technique for forecasting of tropical cyclone tracks based on the CMA-TRAMS ensemble prediction system. J. Meteor. Res., 37(x), 1–18,doi: 10.1007/s13351-023-3064-z."

[15]ZHANG Xu-bin, LI Jing-shan, LUO Ya-li, et al. Impacts of Increasing Model Resolutions and Shortening Forecast Lead Times on QPFs in South China During the Rainy Season [J]. Journal of Tropical Meteorology, 2023, 29(3):277-300, https://doi.org/10.3724/j.1006-8775.2023.021

[16]Shi Y., Zhang X., Dai G., Yang Z., Tu J., Chen Z.Forecast Performance of the Pre-operational CMA-TRAMS (EPS) in South China During April−September 2020;2023-06;Journal of Tropical Meteorology, 29: 236−251

[17]DENG Wen-jian, REN Peng-fei, ZHANG Dong, et al. An Extreme Monsoonal Heavy Rainfall Event over Inland South China in June 2022: A Synoptic Causes Analysis [J]. Journal of Tropical Meteorology, 2023, 29(1): 16-25,https://doi.org/10.46267/j.1006-8775.2023.002"

[18]ZHANG Lan, REN Peng-fei, XU Dao-sheng, et al. FSS-based Evaluation on Monsoon Precipitation Forecasts in South China from Regional Models with Different Resolution [J]. Journal of Tropical Meteorology, 2023, 29(3): 301-311,https://doi.org/10.3724/j.1006-8775.2023.022

[19]黄燕燕,蒙伟光,冯业荣,张诚忠,陈德辉,郑彬.华南登陆台风降水不对称性及持续性问题[J].气象,2023,49(04):385-399.

[20]董少柔,林爱兰,董彦彤.1961~2017年华南区域性持续高温过程年际变化成因分析[J].大气科学,2023,47(05):1325-1340.

[21]梁钟清,张艳霞,钟水新等.地形对一次粤北暖区暴雨的影响研究[J].热带气象学报,2023,39(04):536-550.DOI:10.16032/j.issn.1004-4965.2023.048.

[22]伍红雨,邹燕,郭尧.损失率评估模型在广东气象灾害损失评估中的应用[J].气象,2023,49(06):757-764.

[23]王睿,伍志方,林青等.改进的精细分辨率雷达探测强对流效果评估[J].热带气象学报,2023,39(03):323-336.DOI:10.16032/j.issn.1004-4965.2023.030.

[24]沈菲菲,闵锦忠,吴乃庚,李泓,束艾青,王易,欧紫娴.扩展水凝物控制变量的雷达资料同化对台风“天鸽”数值模拟的影响[J].热带气象学,2023,39(01):23-36.DOI:10.16032/j.issn.1004-4965.2023.003.

[25]何国文,何成,王海潮,苗圣杰,刘晨曦,王一鸣,刘南希,曹天慧,邓涛,吴兑,卢骁,范绍佳.环珠江口近地面夜间臭氧上升现象:基于垂直观测的两个个例研究[J].环境科学学报,2023,43(01):87-96.DOI:10.13671/j.hjkxxb.2022.0413.

[26]陈浩伟,徐道生*,高翠翠,等. IAU-Replay初始化方法在华南暖区暴雨模拟中的应用研究. 气象科学,2023,43(5):600-611.

2022

[1]Zhang, X. (2022). Impacts of New Implementing Strategies for Surface and Model Physics Perturbations in TREPS on Forecasts of Landfalling Tropical Cyclones. Advances in Atmospheric Sciences, 39(11), 1833–1858. https://doi.org/10.1007/s00376-021-1222-8

[2]Zhang, Y.; Xu, D.; Chen, Z.;Meng, W. Offline Diagnostics of Skin Sea Surface Temperature from a Prognostic Scheme and Its Application in Typhoon Forecasting Using the CMA-TRAMS Model over South China. Atmosphere 2022, 13,1324. https://doi.org/10.3390/atmos13081324

[3]Zhang, G., Mao, J., Hua, W., et al. Synergistic effect of the planetary-scale disturbance, typhoon and meso-β-scale convective vortex on the extremely intense rainstorm on 20 July 2021 in Zhengzhou. 2022,  Advances in Atmospheric Sciences, doi: 10.1007/s00376-022-2189-9.

[4]Jeremy Cheuk Hin Leung· Weihong Qian· Peiqun Zhang· Banglin Zhang. Geopotential-based Multivariate MJO Index: extending RMM-like indices to pre-satellite era. Climate Dynamics, 59, 609–631 (2022). https://doi.org/10.1007/s00382-022-06142-2.

[5]Ai, Y., N. Jiang, W. H. Qian, J. C.-H. leung, and Y. Y. Chen, 2022: Strengthened regulation of the onset of the South China Sea summer monsoon by the Northwest Indian Ocean warming in the past decade. Adv. Atmos. Sci., 39(6), 943−952, https://doi.org/10.1007/s00376-021-1364-8.

[6]Ouyang, S., Deng, T., Liu, R., Chen, J., He, G., Leung, J. C.-H., Wang, N., and Liu, S. C.: Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China, Atmos. Chem. Phys., 22, 10751–10767, https://doi.org/10.5194/acp-22-10751-2022, 2022."

[7]Gan, Q., Wang, L.,Leung, J. C.-H., Weng, J., & Zhang, B. (2022).Recent weakening relationship between the springtime Indo-Pacific warm pool SST zonal gradient and the subsequent summertime western Pacific subtropical high. International Journal of Climatology, 1–22. https://doi.org/10.1002/joc.7890

[8]Li, X., Hu, Z.-Z., Zhao, S., Ding, R., & Zhang, B. (2022). On the asymmetry of the tropical Pacific thermocline fluctuation associated with ENSO recharge and discharge. Geophysical Research Letters, 49, 22GL099242. https://doi.org/10.1029/2022GL099242

[9]Gao, Z., Hu, ZZ., Zheng, F. et al. Single-year and double-year El Niños. Clim Dyn (2022). https://doi.org/10.1007/s00382-022-06425-8

[10]Qian, W., Xu, M. & Ai, Y. Anomaly-based synoptic analysis to identify and predict meteorological conditions of strong ozone events in North China. Air Qual Atmos Health 15, 1699–1711 (2022). https://doi.org/10.1007/s11869-022-01208-w

[11]Qian, W., Leung, J. C.-H., Ren, J., Du, J., Feng, Y., & Zhang, B. (2022). Anomaly based synoptic analysis and model prediction of six dust storms moving from Mongolia to northern China in Spring 2021. Journal of Geophysical Research: Atmospheres, 127, e2021JD036272. https://doi.org/10.1029/2021JD036272

[12]Qian, W.; Du, J. Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology 2022, 1, 127–141. https://doi.org/10.3390/meteorology1020008.

[13]Chen, S., Wang, W., Li, M., Mao, J., Ma, N., Liu, J., et al. (2022). The contribution of local anthropogenic emissions to air pollutants in Lhasa on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 127, e2021JD036202. https://doi.org/10.1029/2021JD036202.

[14]Leung, J.CH., Zhang, B., Gan, Q. et al. Differential expansion speeds of Indo-Pacific warm pool and deep convection favoring pool under greenhouse warming. npj Clim Atmos Sci 5, 97 (2022). https://doi.org/10.1038/s41612-022-00315-w.

[15]Huang H., Leung J.C.H., Chan J.C.L., Liu J., Qian W., Zhang B. (2022) Recent unusual consecutive spring tropical cyclones in the North Atlantic and winter oceanic precursor signals. Journal of Meteorological Research.doi: 10.1007/s13351-023-2111-0

[16]Jiang N., Yu M., Lu B., Leung J.C.H., Zhu C. (2022) The Late 1970s’ Shift in ENSO Persistence Barrier Modulated by the Seasonal Amplitude of ENSO Growth Rate. Journal of Climate. DOI 10.1175/JCLI-D-22-0507.1

[17]Mou J, Zhou L, Wu L, et al. (2022) Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF-Chem With MOSAIC. JGR-Atmosphere, 126, e2021JD034913.

[18]Lian S, Zhou L, Murphy D M, et al. (2022) Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA. Atmospheric Chemistry and Physics, 22, 13659-13676.

[19]Wang, N., Huang, X., Xu, J., Wang, T., Tan, Z. M., Ding, A. Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China. Science Advances, 2022, 8(2), eabl6166.

[20]Zheng, B, Gu D, Lin A, Peng D, Li C, and Huang Y. Phase determination of persistent heavy rainfall related to 10–30‑day intraseasonal oscillation over Southeastern China. THEORETICAL AND APPLIED CLIMATOLOGY. 2022,147:1685–1695

[21]ZHANG Yan-xia, CHEN Zi-tong, MENG Wei-guang, et al. Applicability of Temperature Discrete Equation to NMRF Boundary Layer Scheme in GRAPES Model [J]. Journal of Tropical Meteorology, 2022, 28(1): 12-28, https://doi.org/10.46267/j.1006-8775.2022.002.

[22]AI Ze, HE Fei, CHEN Zheng-hong, ZHONG Shui-xin,et al. Simulated Influence of Mountainous Wind Farms Operation on Local Climate [J]. Journal of Tropical Meteorology, 2022, 28(1): 109-120, httsp://doi. org / 10.46267 / j. 1006-8775.2022.009.

[23]XU Dao-sheng, LIANG Jia-hao, LU Ze-bin, et al. Improved Tropical Cyclone Forecasts with IncreasedVertical Resolution in the TRAMS Model [J]. Journal of Tropical Meteorology, 2022, 28(4): 377-387, https://doi. org/10.46267/j.1006-8775.2022.028.

[24]钱维宏,孔海江,赵培娟等.2022.河南“21.7”特大暴雨常规与扰动天气形势分析.地球物理学报,2022,65(11):4208-4224.

[25]伍红雨,吴遥,郭尧.2020—2021年广东秋冬春干旱的成因分析[J].气象,2022,48(06):783-793.

[26]何国文,邓涛,欧阳珊珊,陶丽萍,李振宁,吴晟,张雪,吴兑.广州地区秋季PM_(2.5)和臭氧复合污染的观测研究[J].环境科学学报,2022,42(06):250-259.DOI:10.13671/j.hjkxxb.2021.0462.

[27]艾泽,何飞,陈正洪,钟水新,申彦波.Simulated Influence of Mountainous Wind Farms Operations on Local Climate[J].Journal of Tropical Meteorology,2022,28(01):109-120.

[28]曾琳,伍志方,范绍佳,郑嘉雯,祁秀香,李怀宇.基于风廓线雷达的广州边界层局地回流指数廓线对污染物浓度的影响[J].环境科学学报,2022,42(06):274-284.DOI:10.13671/j.hjkxxb.2021.0519.

[29]王睿,黄燕燕,伍志方,林青,周浪,陈超,吴林.基于双偏振雷达资料对南海弱台风降水微物理结构的分析[J].热带气象学报,2022,38(01):43-57.DOI:10.16032/j.issn.1004-4965.2022.005.

[30]林爱兰,谷德军,李春晖,郑彬,彭冬冬.影响华南汛期持续性强降水年际变化的大气环流和海温异常[J].热带气象学报,2022,38(01):1-10.DOI:10.16032/j.issn.1004-4965.2022.001.

[31]张小娟,张诚忠,齐大鹏,黄钰,朱文达.雷达资料在一次大范围冰雹天气过程中的同化试验分析[J].气象,2022,48(01):61-72.

 

2021

[1]钱维宏等.Anomaly-Based versus Full-Field-Based Weather Analysis and Forecasting.Bulletin of the American Meteorological Society(BAMS),https://doi.org/10.1175/BAMS-D-19-0297.1.

[2]黄燕燕等. An initialisation scheme for tropical cyclones in the South China Sea. Quarterly Journal of the Royal Meteorological Society,2021,147(739): 3096–3110.

[3]徐道生等.Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing.ADVANCES IN ATMOSPHERIC SCIENCES, 2021,38(4):615-626.

[4]钟水新等.The heavy rainfall during the warm season over the Pearl River Delta region: Movements and early signals.Atmospheric Science Letters,2021,22(2):1-7.

[5]钱维宏等.Anomaly-based synoptic analysis and model product application for 2020 summer southern China rainfall events.Atmospheric Research,https://doi.org/10.1016/j.atmosres.2021.105631.

[6]钱维宏等.Opposite anomalous synoptic patterns for potential California large wildfire spread and extinguishing in 2018 cases.Atmospheric Research, 2021,262,105804.

[7]Jian Shi,Kaijun Wu,钱维宏等. Characteristics, trend, and precursors of extreme cold events in northwestern North America Atmospheric Research .Atmospheric Research,2021, 249,105338.

[8]张旭斌.Impacts of different perturbation methods on multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX.Quarterly Journal of the Royal Meteorological Society,2021,147:3899-3921.

[9]张旭斌.Case dependence of multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX.Monthly Weather Review,2021, 149, 1853-1871.

[10]李昊睿等.Implementation of the Incremental Analysis Update Initialization Scheme in the Tropical Regional Atmospheric Modeling System under the Replay Configuration.Journal of Meteorological Research,2021,35,1,198-208.

[11]钟水新等.Budgets of rotational and divergent kinetic energy in the warm-sector torrential rains over South China: a case study.Meteorology and Atmospheric Physics,2021, 133(3), 759-769. doi.org/10.1007/s00703-021-00778-1.

[12]钟水新等.Performance evaluation of the GRAPES model for wind simulation comparison with observed data for South China.JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(1): 1-9, https://doi.org/10.46267/j.1006-8775.2021.001.

[13]梁家豪等. Assessment of FY-2G Atmospheric Motion Vector Data and Assimilating Impacts on Typhoon Forecasts.Earth and Space Science ,2021, 8, e2020EA001628. https://doi.org/10.1029/2020EA001628.

[14]林晓霞等.Improving the Nowcasting of Strong Convection by Assimilating Both Wind and Reflectivity Observations of Phased Array Radar: A Case Study..Journal of Meteorological Research,doi: 10.1007/s13351-022-1034-5.

[15]Jingying Mao,周鲁犀等.Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF-Chem With MOSAIC.Journal of Geophysical Research:Atmospheres ,2021:126(23)/E2021jd034913.

[16]钟水新等. A comparison study of predictability of GRAPES model on simulation of two heavy rainfalls in Zhenzhou, Henan province in 2021.JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(4):406-417.

[17]陈子通等.Development of 1km-Scale Operational Model in South China. .JOURNAL OF TROPICAL METEOROLOGY, 2021, 27(4):319-329.

[18]冯业荣等.基于扰动模式的四维变分资料同化系统框架的设计完善和数值试验.气象学报,2021,79(6):902-920.

[19]钱维宏等.辽宁开原龙卷强对流过程的扰动天气环境.地球物理学报,2021,64(05):1531-1541.

[20]陈锦鹏,冯业荣等.基于卷积神经网络的逐时降水预报订正方法研究.气象,2021,47(01):60-70.

[21]徐道生等.高阶精度有限差分方案下的非跳点网格试验:基于浅水波方程.大气科学,2021,45(3): 513−523.

[22]林爱兰等.南亚高压季节内变化与热带季节内振荡之间的关系. 大气科学,2021,45(03):633-650.

[23]刘金卿等.西南涡引发的强对流天气特征. 高原气象,2021,40(03):525-534.

[24]钱维宏等.相对瞬变气候态的气候异常.大气科学学报,2021,44(01):75-88.

[25]张华龙,伍志方等. 基于因子分析的广东省短时强降水预报模型及其业务试验.气象学报,2021,79(01):15-30.

[26]林晓霞等. 华南区域高分辨率数值模式前汛期预报初步评估.热带气象学报,2021,37(04):656-668.

[27]伍红雨等.华南区域性暴雨过程的客观评估及异常机理分析.暴雨灾害,2021,40(03):306-315.

[28]汪海恒,张曙,伍志方等.2019年韶关“5·18”局地特大暴雨极端性成因分析. 热带气象学报,2021,37(01):49-60.

[29]李婷苑,吴乃庚等.华南区域大气成分数值模式GRACEs预报性能评估. 热带气象学报,2021,37(02):207-217.

2020

SCI/EI

[1]王洪等. An improvement of convective precipitation nowcasting through lightning data dynamic nudging in a cloud-resolving scale forecasting system. Atmospheric Research,https://doi.org/10.1016/j.atmosres.2020.104994.

[2]王立稳等.A test of a sun glint correction method for the near-3.9 µm channels of the FengYun-3D Hyperspectral InfraRed Atmospheric Sounder (HIRAS).Remote Sensing Letters,2020,11(10):943-951  https://doi.org/10.1080/2150704X.2020.1795297.

[3]钟水新. Diurnal variation of the duration and environment for heavy rainfall during the warm season in South China.Atmospheric Science Letters,2020,21(6),1–6.

[4]吴乃庚等.Practical and Intrinsic Predictability of a Warm‐Sector Torrential Rainfall Event in the South China Monsoon Region.Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2019JD031313.

[5]张诚忠等.The impact of dropsonde data on a numerical simulation of landfalling typhoon Mangkhut". Meteorological Applications,2020,27(5):1-17  https://doi.org/10.1002/met.1947.

[6]Xufei Liu , 王楠等.Photochemistry of ozone pollution in autumn in Pearl River Estuary,South China.Science of the Total Environment,2021,754,141812.

[7]林爱兰等.Climate shift of the South China Sea summer monsoon onset in 1993/1994 and its physical causes.Climate Dynamics,2020,54,1819–1827.

[8]郑彬等. How can 30-60-day ISO move from the South China Sea to Southern China?. Climate Dynamics,2020,54,3613-3624.

[9]YUNTAO JIAN,林晓霞等.Analysis of Record-High Temperature over Southeast Coastal China in Winter 2018/19:The Combined Effect of Mid- to High-Latitude Circulation Systems and SST Forcing over the North Atlantic and Tropical Western Pacific.JOURNAL OF CLIMATE,2020,33,8813-8831.

[10]钟水新等. The heavy rainfall during the warm season over the Pearl River Delta region: Movements and early signals. Atmospheric Science Letters. 2021,22(2):1-7. https://doi. org/10.1002/asl.1012.

[11]钟水新等.Nocturnal-to-morning rains during the warm season in South China: characteristics and predictability, Atmospheric and Oceanic Science Letters, 2020,13(6): 527-533. doi: 10.1080/16742834.2020.1820844.

[12]钟水新等.A STUDY ON THE PREDICT ABILITY OF GRAPES MODEL OVER SOUTH CHINA:COMPARISONS BY TWO INITIALIZATION CONDITIONS BETWEEN ECMWF AND NCEP. JOURNAL OF TROPICAL METEOROLOGY,2020,26(1),27-34.

[13]吴亚丽等.Synoptic Characteristics RelatedtoWarm-Sector Torrential Rainfall Events in South China During the Annually First Rainy Season.Journal of Tropical Meteorology,2020,26(3):253-260.

[14]钟水新等.A Review on GRAPES-TMM Operational Model System at Guangzhou Regional Meteorological Center.Journal of Tropical Meteorology,2020,26(04):495-504.

一级核心期刊

[16]徐道生等.非均匀分层下的二阶精度垂直差分方案及其在GRAPES 模式中的应用.大气科学,2020,44(5):975−983. 

[17]徐道生等.TRAMS_RUC_1 km 模式初始场和侧边界方案的改进研究 .大气科学,2020,44(3):625−638.

[18]伍红雨等.基于区域自动气象站的广东极端强降水特征分析.气象,2020,46(06):801-812.

[19]闵锦忠,吴乃庚近二十年来暴雨和强对流可预报性研究进展.大气科学,2020,44(05):1039-1056.

[20]冯业荣等.GRAPES区域扰动预报模式动力框架设计及检验.气象学报,2020,78(5):805-815.

[21]徐道生等.南海台风模式TRAMS 3.0的技术更新和评估结果.气象,2020,46(11):1474-1484.

二级核心期刊

[22]陈子通等.热带高分辨率模式(TRAMS-V3.0)技术方案及其系统预报性能.热带气象学报,2020,36(04):444-454.

[23]张艳霞等.华南锋面和季风降水环流特征及加热结构对比分析.热带气象学报,2020,36(01):1-12.

[24]林爱兰等.体现大尺度特征的区域持续性强降水过程定义指标.热带气象学报,2020,36(03):289-298.

[25]伍红雨等.广东气候年景的客观定量化评估.大气科学学报,2020,43(03):516-524.

[26]吴乃庚等.华南前汛期暖区暴雨研究新进展.气象科学,2020,40(05):605-616.

[27]钱维宏等.一次广东典型龙舟水暴雨过程的扰动形势分析.热带气象学报,2020,36(04):433-443.

[28]伍红雨等.1961—2018年广东高温的气候变率及其与大气环流和海温异常的关系.热带气象学报,2020,36(04):455-463.

[29]吴凯昕等. 非均匀网格下的高阶精度中央差分格式:理论推导和理想试验.热带气象学报,2020,36(3):389-400.

2019

SCI/EI

[1]Banglin Zhang et al.Changes of tropical cyclone activity in a warming world are sensitive to sea surface temperature environment.Environmental Research Letters,https://doi.org/10.1088/1748-9326/ab5ada.

[2]张旭斌.Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX.Quarterly Journal of the Royal Meteorological Society,2018,144(717):2842-2862.

[3]张旭斌.Multiscale Characteristics of Different-Source Perturbations and their Interactions for Convection-Permitting Ensemble Forecasting during SCMREX.Monthly Weather Review,2019, 147, 291-310.

[4]张旭斌.Assimilation of Data Derived from Optimal-Member Products of TREPS for Convection-Permitting TC Forecasting over Southern China.Atmosphere,2019, 10, 84.

[5]王洪等.An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer.Atmospheric Research,2019,226:171-180.

[6]Zhong SX , et al..Characteristics and synoptic environment of torrential rain in the warm sector over South China: a composite study.Meteorology Atmospheric Physics,2019,131(5),1191-1203.

[7]Yang S, Tang XB, Zhong SX, et al.Convective bursts episode of the rapidly intensified typhoon Mujigae.ADVANCES ATMOSPHERIC SCIENCES,http://doi.org/10.1007/s00376-019-8142-x.

[8]Naigeng Wu,et al.Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season.Atmospheric Research, https://doi.org/10.1016/j.atmosres.2019.104693.

[9]Xiaoran Zhuang, Naigeng Wu,et al.Understanding the Predictability within Convection-Allowing Ensemble Forecasts in East China:Meteorological Sensitivity, Forecast Error Growth and Associated Precipitation Uncertainties Across Spatial Scales.Atmosphere,2020, 11, 234; doi:10.3390/atmos11030234.

[10]YaliWu,et al.Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR.Atmospheric Research,https://doi.org/10.1016/j.atmosres.2020.104912.

[11]Zhujie Li, Haobo Tan,et al.Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China.Atmospheric Chemistry and Physics, 19, 11669–11685, 2019 https://doi.org/10.5194/acp-19-11669-2019.

[12]Li C,et al. Lin A.Asymmetric effects of atmospheric circulation on the South China Sea summer monsoon onset.Dynamics of Atmospheres and Oceans,87, doi: 10.1016/j.dynatmoce.2019.101099.

[13]Zheng B,et al.The 30–60-day northward-propagating intraseasonal oscillation over South China Sea during pre-monsoon period in a coupled model.Internationa Journal of Chimatology,39, 4811–4824.

[14]Zheng B, et al.Mechanisms of Northward-Propagating Intraseasonal Oscillation over the South China Sea during the Pre-Monsoon Period.JOURNAL OF CLIMATE VOLUME,32(11): 3297-3311.

[15]于鑫,郑腾飞等.CAUSAL ANALYSIS AND NUMERICAL MODELING OF THE INSHORE INTENSIFICATION OF SUPER TYPHOON “HATO”.JOURNAL OF TROPICAL METEOROLOGY,2019,25(03):293-303.

[16]Zhong SX,et al.EVALUATION OF THE PARAMETERIZATION SCHEMES AND NUDGING TECHNIQUES IN GRAPES FOR WARM SECTOR TORRENTIAL RAINS USING SURFACE OBSERVATIONS.JOURNAL OF TROPICAL METEOROLOGY,2019,25(03):353-364.

[17]Zhong SX,et al.Capabilities and limitations of grapes simulations of extreme precipitation in the warm sector over a complex orography.JOURNAL OF TROPICAL METEOROLOGY,2019,25(02):180-191.

[18]董少柔,张团团,杨崧,冯业荣.Dynamical prediction of west China autumn rainfall by the NCEP Climate Forecast system.JOURNAL OF TROPICAL METEOROLOGY,2019,25(01):114-128.

一级核心期刊

[19]伍红雨等.广东区域性暴雨过程的定量化评估及气候特征.应用气象学报,2019,30(02):233-244.

[20]蒙伟光等.季风槽环境中暴雨中尺度对流系统的分析与数值预报试验.气象学报,2019, 77(6):980-998.

[21]徐道生等.一种基于分析增量更新技术的台风初始化方.气象学报,2019,77(06):1053-1061.

[22]张兰,徐道生(通讯作者)等.雷达反演资料的Nudging同化对华南暴雨过程短临预报的影响.高原气象,2019,38(06):1208-1220.

二级核心期刊

[23]李霁杭等.基于2017年5月7日广州特大暴雨分析影响半径对集合卡尔曼滤波方法同化效果的影响.热带气象学报,2019,35(01):73-88.

[24]张诚忠等.基于贝叶斯方案的雷达反射率反演水汽及其同化试验.热带气象学报,2019,35(02):145-153.

[25]李霁杭等.基于观测路径的集合预报样本优选对热带气旋的模拟研究.热带气象学报,2019,35(02):197-209.

[26]梁巧倩,蒙伟光等.广东前汛期锋面强降水和后汛期季风强降水特征对比分析.热带气象学报,2019,35(01):51-62.

[27]郑彬,黄燕燕等.局地水汽异常引起的非绝热加热对2016/2017年中国南方暖冬的影响.热带气象学报,2019,35(03):289-295.

[28]李彩玲,吴乃庚等.台风“艾云尼”(2018)外围两次近距离龙卷的环境条件和雷达特征.热带气象学报,2019,35(04):446-457.

[29]林书恒,管玉平,张邦林.CMIP5模式对近30年沃克环流强度变化模拟的不足及成因分析.热带海洋学报,2019,38(05):52-67.

[30]李海燕,孙家仁,谌志刚,梁之彦,钟水新等.两类El Ni■o事件对华南前汛期降水异常的影响.热带气象学报,2019,35(04):491-503.

[31]张妤晴,林爱兰等.南海周边越赤道气流的多时间尺度变化特征及其与环流和降水的联系.热带气象学报,2019,35(04):504-516.

[32]李春晖等.青藏高原热力作用对南海及周边区域夏季气候的影响研究进展.热带气象学报,2019,35(02):268-280.

[33]汤静,王春林,谭浩波等.利用PCA-kNN方法改进广州市空气质量模式PM_(2.5)预报.热带气象学报,2019,35(01):125-134.

[34]张诚忠等.资料同化对2017年登陆广东沿海台风的短期降水与路径预报影响.热带气象学报,2019,35(05):577-586.

[35]朱文达,陈子通(通讯作者)等.高分辨地形对华南区域GRAPES模式地面要素预报影响的研究.热带气象学报,2019,35(06):801-81.

[36]伍红雨等.1961—2018年粤港澳大湾区气候变化分析.暴雨灾害,2019,38(04):303-310.

[37]蔡景就,伍志方等.“18•8”广东季风低压持续性特大暴雨成因分析.暴雨灾害,2019,38(06):576-586.

[38]郭姿佑,伍志方等.“18•8”广东季风低压持续性特大暴雨水汽输送特征暴雨灾害.暴雨灾害,2019,38(06):587-596.

[39]赵杨洁,李江南,董雪晗,冯业荣.模式分辨率对台风“天鸽”(2017)模拟效果的影响.热带气象学报,2019,35(05):629-643.

[40]林书恒,管玉平,张邦林.CMIP5模式对近30年沃克环流强度变化模拟的不足及成因分析.热带海洋学报,2019,38(05):52-67.

[41]王德立,孔凡铀,王洪等.双偏振雷达资料同化对一次台风降雨模拟的影响.气象科技进展,2019,9(03):153-159.